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R&D Program 
Components

1. Establish open, curated data 
sets ready for modeling

• Covering safety, PK, and efficacy for 
multiple targets

• Partnerships to grow the data

2. Tools and frameworks for 
predictive modeling R&D

• AMPL model training pipeline released
• Extending to multi-scale human system 

models

3. Develop an open generative 
molecular design platform

• High-performance multiparameter 
optimization (gray loop) in place

• Demonstration and initial validation on 
AURK cancer target

• Active learning loop (yellow) in progress
• Pilots projects on COVID-19 set with 

partners

The goal of ATOM is to establish an open framework for generative 
molecular design with human-level predictive models and active 
learning

Status Summary
- Shared collaboration space at Mission Bay, SF
- Starting Year 4 of 5, ~20 FTEs engaged on R&D team
- New 501c3 structure with multiple pharma partners starting up in Jan 2021



AMPL has been released open source

https://github.com/ATOMconsortium/AMPL
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https://arxiv.org/abs/1911.05211

https://github.com/ATOMconsortium/AMPL
https://arxiv.org/abs/1911.05211
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AMPL is the basis for ATOM student engagement 
programs

∙ ATOM summer internships: 
• Six students from Butler University 

PharmD and UC Davis
• Planning expansion for Summer 2021

∙ Purdue University Data Mine 
Program:

• Support a data science team (~10 
students) 

• Focusing on data analysis and 
machine learning applications with 
AMPL

• Six trainees among ATOM member 
labs

Summer 2020 Intern Projects

• Data Curation for a Mitochondrial Membrane 
Potential Model 

• Public Datasets within AMPL 

• Visualize Data: Creating Interactive Plots to 
Improve Exploratory Data Analysis 

• Working with Open Data Sources: PK DB, 
Lombardo Dataset, and AstraZeneca 

• Featurization and Analysis of COVID-19 data 

• Explainable 3D-CNN Models for Protein-Ligand 
Binding



Predicting Volume of Distribution (VDss) in Humans
Performance of in silico Methods for a Large Set of Structurally Diverse Clinical Compounds

Pharmacokinetics (PK) Platform Experimental Datasets

VDss Prediction Approaches In silico VDss Prediction Evaluation
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Plasma

Organs

Tumor

• Developed 
physiologically-based 
pharmacokinetics (PBPK) 
model for human PK 
prediction

• Applied to human VDss 
predictions

Datasets

Plasma protein binding

Blood plasma partitioning

LogD

Adipocyte partitioning

Myocyte partitioning

• Obach Lombardo (DMD 2018) 
compounds with human PK 
measurements

• ATOM collected in vitro PK data for 
250 compounds

• Largest publicly-available
in vitro and in vivo PK dataset

Methods

1. Mechanistic models for tissue partitioning with predicted 
PK properties 🡪 human VDss

2. Mechanistic models for tissue partitioning using 
experimental PK properties 🡪 human VDss

3. Allometric scaling of predicted animal VDss

4. Direct machine learning prediction of human VDss

• Comparison to 
experimental test 
set

• For limited data, 
mechanistic 
models for tissue 
partitioning were 
most effective

Input
2D 
molecular 
structures

• With enough animal and human VDss data, direct machine 
learning models were able to predict
human VDss
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Cancer relevant: >30 clinical trials for AURKA selective, 
AURKB selective, and AURKA/B dual inhibitors 
Data available at ATOM: Potency data on ~24k 
compound available for AURK B and/or AURK A

ATOM Generative Molecular Design loop 
Proof-of-Concept
Generative molecular design of AURK B inhibitors 



~200 Compounds with high potency, selectivity, 
and other favorable properties
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Legend:

Efficacy of generated compounds not in 
ATOM database is well predicted

R2: AURK A : 0.68   AURK B: 0.75



The generative model is creating a limited range 
of new molecules

• Number of novel generated compounds 
falls off after 25-40 generations

• 600,000 evaluated, but only 36,553 unique
• Few top-ranking molecules discovered after 

40 generations. 
• Many in top 500 share common scaffold.

• Reasons:
• Greedy genetic algorithm converges on 

narrow region of chemical space. Need to 
adjust mutation rate, other parameters.

• VAE trained on project-specific compound set 
can only generate compounds with same 
“vocabulary”. Training on more diverse set will 
alleviate this limitation.
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▪ Project a lead compound into the molecular generator’s latent space

▪ Optimize compound in latent space through guided search and small perturbations

▪ Project new latent vector back into chemical space to create new compound

▪ Different lead compounds should encode to different parts of chemical space

Training molecular generator with more compounds should lead 
to an increase in chemical diversity of proposed solutions

Encoder

Molecular Optimizer

Decoder

Targeted 
Chemical 
Space

Expanded 
Chemical 
Space

Expanded 
Chemical 
Space

Targeted 
Chemical 
Space

Molecular Generator
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▪ State of the art Junction Tree Variational Autoencoders are slow to train
— Direct realization of molecular graphs using tree decomposition and graph message passing network
— 24 hours on 1M chemical compounds using community implementation in PyTorch

▪ Identify scalable neural network architecture
— Explore new generations of character-based sequence models

▪ Encode the compound as SMILE string
— Simplified molecular input line entry system

▪ Perturb the chemical’s latent representation

▪ Decode a new chemical
— Generational auto-encoder architecture

▪ Evaluate chemical similarity to original compound
— Use Tanimoto similarity / distance metric

Our current encoders and decoders are trained on a limited data 
set

CN1C=NC2=C1C(=O)N(C(=O)N2C)C

Amphetamine and Methylhexanamine similarity.

By Jü - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?c
urid=31281660
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▪ In this work we will scale up to a training data set of 1.613B compounds

▪ Enamine REAL database (synthesizable drug-like compounds)
— 1.36B chemicals - downloaded in the first quarter of 2020

▪ Enamine historical database
— 252M non-overlapping historical Enamine compounds downloaded in the first quarter of 2018

▪ Targeted chemical compound database (Mpro_inhib)
— 1 million additional purchasable compounds screened for SARS-CoV-2 main protease (Mpro) 

inhibition activity 

▪ Our test set is composed of a held-out set of 2M Enamine and 10K Mpro_inhib 
compounds

Expanding the diversity of molecular generation – scaling up the 
training data
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Propose new character-Wasserstein Autoencoder (cWAE) that 
tackles issue of direct reconstruction required for lead optimization

▪ cWAE is a class of autoencoder that addresses problems 
with cAE and cVAE
— character-based WAE version of original WAE [Tolstikhin et.al, 2017]

▪ Its basic structure is similar to cVAE but with a different 
additional regularized penalty terms 
— Additional term is implemented as a discriminator network D in 

latent space Z that differentiate between sample drawn from a 
Gaussian prior N(0,1) and samples drawn from latent space (Qz)

▪ Wasserstein term ensure better reconstruction and 
variational sampling from latent space

▪ Variational latent space allows both guided and novel 
compound generation

▪ These characteristics enable small molecule design guided 
by lead optimization compound
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Training at Scale with 1.613B compounds and 16,640 GPUs on 
Sierra: Scalable Deep Learning Software Stack

▪ Optimized distributed memory algorithms

▪ Pythonic “PyTorch-based” model description

▪ Support for model exchange with PyTorch ▪ C++ / MPI + OpenMP / CUDA / cuDNN / NCCL

▪ Open-sourced on github.com
— https://github.com/LLNL/lbann

— https://github.com/LLNL/Elemental

— https://github.com/LLNL/DiHydrogen

— https://github.com/LLNL/Aluminum

https://github.com/LLNL/lbann
https://github.com/LLNL/Elemental
https://github.com/LLNL/DiHydrogen
https://github.com/LLNL/Aluminum
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The tournament method creates a single model instance that is 
trained on a massive data set [Jacobs et al. 2017, 2019]

▪ Entire supercomputer used to accelerate training

▪ Multiple trainers with independent, partitioned data sets

▪ Periodically exchange model with random peer

— After one or more epochs of training

▪ Run local tournament to select current or exchanged model

▪ Continue training using winning model

▪ Scalability is maintained through parallelism
— Within trainers: collective communication

— Between trainers: point-to-point communication

▪ Benefits
— Scalable peer-to-peer communication

— Use parallel resources to reduce total time to train

Scale up to largest HPC systems to train on the largest data sets
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LBANN enabled Training of Models at Scales Previously 
Unobtainable

▪ Optimized data ingestion scaled training to 1.613B 
compound data set on up to 4160 nodes

▪ Reconstruction error of ~0.025 was good enough
— Better than prior state of the art

— Sufficient Tanimoto distance for domain scientists

▪ Asynchronous LTFB algorithm enables scaling 
without loss of model quality
— Non-overlapping partition of the data set provided linear 

performance gains with more trainers

▪ Training time with 8 GPUs per trainer was faster per 
epoch
— Took more epochs to achieve similar accuracy

▪ Reducing # of trainers reduced # of iterations 
required to meet fixed reconstruction error
— 16 GPUs per trainer required fewer epochs
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LBANN+LTFB enables improved time to solution with additional 
compute resources

▪ Increasing trainers reduces time required to 
train to fixed accuracy with 1.613B samples
— 1.79× speedup at 256 nodes vs 64 nodes

— Parallel efficiency of 44.65% 

▪ Changes the time-to-insight from a 
compute-limited issue to a human-limited one
— 32 minutes @ 256 nodes to 0.025 recon. error

— 23 minutes @ 4160 nodes to 0.025 recon. error

▪ Running at 4160 nodes achieves 17.1% peak 
efficiency of FP16/acc FP32
— 18% speedup for 4160 nodes vs 2048 nodes

— 2.39× speedup with 4160 nodes vs 64 nodes
• Parallel efficiency of 3.68%

▪ The ability to operate at this scale unlocks a 
new frontier for NN architecture design
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▪ Improved Tanimoto distance ensures that reconstructed compounds have chemical similarity 
to original compound

▪ cWAE is faster to train and use for inference than JT-VAE

▪ Next steps are to integrate cWAE into ATOM design loop

cWAE Outperforms State-of-the-Art Junction-Tree-VAE for 
molecular reconstruction
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▪ What happens when the power company calls you to see what you just did?

▪ Deep learning at scale has center-wide impact → half-precision TensorCores lead to 
dramatic power swings: 
— Periodic 2-3 MW swings caused concern from power company
— Asynchronous learning algorithm minimized center-wide power swings

• Reduced power swing from >200KW per-row to <120KM (each row is 20 racks with 360 nodes)

Lessons Learned: Deep learning at scale exposes unforeseen 
challenges -- Power swings
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Comparing unique compound generation and diversity from 
AURK pilot to current SAR-CoV-2 pilot

cWAE autoencoder provides improved diversity over trained chemical space 



The ATOM generative molecular design loop runs in a hybrid cloud – HPC 
workflow environment
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▪ Deep Neural Network training / classification

— Optimize for strong & weak scaling

— Train large networks quickly

— Enable training on data samples or data sets too 
large for other frameworks 

• Billion sample data sets

— Optimized distributed memory algorithms

— Multi-level parallelism (model / data / ensemble)

Nomenclature:

▪ Trainer:

— Unique set of HPC resources

— Contains one or more neural network models

— Independent set of data

— Implements model and data parallelism

LBANN: Livermore Big Artificial Neural Network Toolkit


